These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Drug delivery and tissue engineering applications of biocompatible pectin-chitin/nano CaCO3 composite scaffolds. Author: Kumar PT, Ramya C, Jayakumar R, Nair Sk, Lakshmanan VK. Journal: Colloids Surf B Biointerfaces; 2013 Jun 01; 106():109-16. PubMed ID: 23434699. Abstract: In this work, we have developed a nanocomposite scaffold using a mixture of pectin, chitin and nano CaCO3 using the technique of lyophilization, with an intended use towards biomedical applications such as tissue engineering and drug delivery. The prepared composite scaffold was characterized using scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). In addition, swelling, degradation and biomineralization capability of the composite scaffold was evaluated. The developed composite scaffold showed controlled swelling and degradation in comparison with the control scaffold. Cytocompatibility evaluation of the scaffold was tested on NIH3T3, L929 and human dermal fibroblast (HDF) cells, showed negligible toxicity towards cells. Cell attachment and proliferation studies were also conducted using these cells, which showed that cells attached onto the scaffolds and started to proliferate after 48 h of incubation. Further, drug delivery through the scaffold was examined using a bisphosphonate called Fosamax. These results suggest that the developed composite scaffold possess the essential requisites for their application in the fields of tissue engineering and drug delivery.[Abstract] [Full Text] [Related] [New Search]