These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Evidence for IFNα-induced, SAMHD1-independent inhibitors of early HIV-1 infection. Author: Goujon C, Schaller T, Galão RP, Amie SM, Kim B, Olivieri K, Neil SJ, Malim MH. Journal: Retrovirology; 2013 Feb 25; 10():23. PubMed ID: 23442224. Abstract: BACKGROUND: Type I interferon (IFN) treatment of some cells, including dendritic cells, macrophages and monocytic THP-1 cells, restricts HIV-1 infection and prevents viral cDNA accumulation. Sterile alpha motif and HD domain protein 1 (SAMHD1), a dGTP-regulated deoxynucleotide triphosphohydrolase, reduces HIV-1 infectivity in myeloid cells, likely by limiting dNTPs available for reverse transcription, and has been described as IFNα-inducible. Myeloid cell infection by HIV-1 is enhanced by HIV-2/SIVSM Vpx, which promotes SAMHD1 degradation, or by exogenous deoxyribonucleoside (dN) addition. FINDINGS: SAMHD1 expression was not substantially influenced by IFNα treatment of monocyte-derived macrophages or THP-1 cells. The contributions of SAMHD1 to the inhibition of HIV-1 infectivity by IFNα were assessed through the provision of Vpx, exogenous dN addition, or via RNAi-mediated SAMHD1 knock-down. Both Vpx and dN efficiently restored infection in IFNα-treated macrophages, albeit not to the levels seen with these treatments in the absence of IFNα. Similarly using differentiated THP-1 cells, the addition of Vpx or dNs, or SAMHD1 knock-down, also stimulated infection, but failing to match the levels observed without IFNα. Neither Vpx addition nor SAMHD1 knock-down reversed the IFNα-induced blocks to HIV-1 infection seen in dividing U87-MG or THP-1 cells. Therefore, altered SAMHD1 expression or function cannot account for the IFNα-induced restriction to HIV-1 infection seen in many cells and cell lines. CONCLUSION: IFNα establishes an anti-HIV-1 phenotype in many cell types, and appears to accomplish this without potentiating SAMHD1 function. We conclude that additional IFNα-induced suppressors of the early stages of HIV-1 infection await identification.[Abstract] [Full Text] [Related] [New Search]