These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Morganella morganii urease: purification, characterization, and isolation of gene sequences. Author: Hu LT, Nicholson EB, Jones BD, Lynch MJ, Mobley HL. Journal: J Bacteriol; 1990 Jun; 172(6):3073-80. PubMed ID: 2345135. Abstract: Morganella morganii, a very common cause of catheter-associated bacteriuria, was previously classified with the genus Proteus on the basis of urease production. M. morganii constitutively synthesizes a urease distinct from that of other uropathogens. The enzyme, purified 175-fold by passage through DEAE-Sepharose, phenyl-Sepharose, Mono-Q, and Superose 6 chromatography resins, was found to have a native molecular size of 590 kilodaltons and was composed of three distinct subunits with apparent molecular sizes of 63, 15, and 6 kilodaltons, respectively. Amino-terminal analysis of the subunit polypeptides revealed a high degree of conservation of amino acid sequence between jack bean and Proteus mirabilis ureases. Km for urea equalled 0.8 mM. Antiserum prepared against purified enzyme inhibited activity by 43% at a 1:2 dilution after 1 h of incubation. All urease activity was immunoprecipitated from cytosol by a 1:16 dilution. Antiserum did not precipitate ureases of other species except for one Providencia rettgeri strain but did recognize the large subunits of ureases of Providencia and Proteus species on Western blots (immunoblots). Thirteen urease-positive cosmid clones of Morganella chromosomal DNA shared a 3.5-kilobase (kb) BamHI fragment. Urease gene sequences were localized to a 7.1-kb EcoRI-SalI fragment. Tn5 mutagenesis revealed that between 3.3 and 6.6 kb of DNA were necessary for enzyme activity. A Morganella urease DNA probe did not hybridize with gene sequences of other species tested. Morganella urease antiserum recognized identical subunit polypeptides on Western blots of cytosol from the wild-type strain and Escherichia coli bearing the recombinant clone which corresponded to those seen in denatured urease. Although the wild-type strain and recombinant clone produced equal amounts of urease protein, the clone produced less than 1% of the enzyme activity of the wild-type strain.[Abstract] [Full Text] [Related] [New Search]