These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Conduction in a biological sodium selective channel.
    Author: Stock L, Delemotte L, Carnevale V, Treptow W, Klein ML.
    Journal: J Phys Chem B; 2013 Apr 11; 117(14):3782-9. PubMed ID: 23452067.
    Abstract:
    The crystal structure of NavAb, a bacterial voltage gated Na(+) channel, exhibits a selectivity filter (SF) wider than that of K(+) channels. This new structure provides the opportunity to explore the mechanism of conduction and help rationalize its selectivity for sodium. Recent molecular dynamics (MD) simulations of single- and two-ion permeation processes have revealed that a partially hydrated Na(+) permeates the channel by exploring three SF binding sites while being loosely coupled to other ions and/or water molecules; a finding that differs significantly from the behavior of K(+) selective channels. Herein, we present results derived from a combination of metadynamics and voltage-biased MD simulations that throws more light on the nature of the Na(+) conduction mechanism. Conduction under 0 mV bias explores several distinct pathways involving the binding of two ions to three possible SF sites. While these pathways are very similar to those observed in the presence of a negative potential (inward conduction), a completely different mechanism operates for outward conduction at positive potentials.
    [Abstract] [Full Text] [Related] [New Search]