These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Simultaneous detection and degradation patterns of kresoxim-methyl and trifloxystrobin residues in citrus fruits by HPLC combined with QuEChERS. Author: Zhu J, Dai XJ, Fang JJ, Zhu HM. Journal: J Environ Sci Health B; 2013; 48(6):470-6. PubMed ID: 23452212. Abstract: This study aimed to investigate the residues, kinetics and dissipation patterns of kresoxim-methyl, (E)-methoxyimino[α-(o-tolyloxy)-o-tolyl]acetate, and trifloxystrobin, methyl(E)-methoxyimino-{(E)-α[1-(α,α,α-trifluoro-m-tolyl)ethylideneaminooxy]-o-tolyl}acetate". A simple and sensitive liquid chromatography-ultraviolet detection (LC-UV) method combined with the 'Quick Easy Cheap Effective Rugged and Safe' (QuEChERS) protocol was developed to quantify the levels of kresoxim-methyl and trifloxystrobin residues in citrus. More than 97% of the kresoxim-methyl and trifloxystrobin deposists gradually dissipated from the citrus peels within 15 days. The half-lives of kresoxim-methyl and trifloxystrobin in the peels were in the ranges of 2.63-2.66 d and 3.12-3.15 d, respectively, and the pattern of decline in the peels followed first-order kinetics. The kresoxim-methyl and trifloxystrobin residues in the pulp dissipated below the detectable level of 0.01 mg kg(-1) after 9 days. Kresoxim-methyl and trifloxystrobin were easily decomposed (T1/2 < 30 d), and the observed dissipation patterns could support the application of these two fungicides in the postharvest storage of citrus fruits.[Abstract] [Full Text] [Related] [New Search]