These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: hnRNP K suppresses apoptosis independent of p53 status by maintaining high levels of endogenous caspase inhibitors.
    Author: Xiao Z, Ko HL, Goh EH, Wang B, Ren EC.
    Journal: Carcinogenesis; 2013 Jul; 34(7):1458-67. PubMed ID: 23455382.
    Abstract:
    Hepatocellular carcinoma (HCC) is the third highest cause of cancer-related deaths globally. One of the cellular hallmarks of this disease is dysregulation of apoptosis, and a better understanding of this process is important if progress is to be made toward effectively treating HCC. Heterogeneous nuclear ribonucleoprotein K (hnRNP K) is a RNA-binding protein that is implicated in apoptosis and is upregulated in various cancers, including HCC. In this study, we report new evidence for a crucial role of hnRNP K in suppressing apoptosis in HCC cells. We used the chemotherapeutic agent 5-fluorouracil to induce apoptosis in HCC cell lines and found that hnRNP K was downregulated, independent of both p53 and caspases. Prolonged downregulation of hnRNP K using small interfering RNA (siRNA) significantly decreased cell viability and increased apoptosis in HCC cell lines in a p53-independent manner. Moreover, enhanced tumor necrosis factor-related apoptosis-inducing ligand potency, independent of BH3-interacting domain death agonist (BID) cleavage, was also observed in hnRNP K siRNA-treated cells. Examination of the underlying mechanism revealed that hnRNP K suppresses the activity of various caspases through controlling transcription of the caspase inhibitor XIAP. Taken together, this study establishes that hnRNP K plays an antiapoptotic role in HCC cell lines, independent of p53 status, via the maintenance of high levels of endogenous caspase inhibitors, and also identifies hnRNP K as a possible therapeutic marker for cancer treatment.
    [Abstract] [Full Text] [Related] [New Search]