These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The regenerative activity of interleukin-6. Author: Galun E, Rose-John S. Journal: Methods Mol Biol; 2013; 982():59-77. PubMed ID: 23456862. Abstract: Interleukin-6 (IL-6) is a cytokine which is involved in many inflammatory processes and in the development of cancer. In addition, IL-6 has been shown to be important for the induction of hepatic acute-phase proteins, for the regeneration of the liver and for the stimulation of B-cells. IL-6 binds to a transmembrane IL-6 receptor (IL-6R), which is present on hepatocytes and some leukocytes. The complex of IL-6 and IL-6R associates with a second protein, gp130, which is expressed on all cells of the body. Since neither IL-6 nor IL-6R has a measurable affinity for gp130, cells, which do not express IL-6R, are not responsive to the cytokine IL-6. It could be shown, however, that a naturally occurring soluble IL-6R (sIL-6R) in complex with IL-6 can bind to gp130 on cells with no IL-6R expression. Therefore, cells shedding the sIL-6R render cells, which only express gp130, responsive to the cytokine. This process has been called trans-signaling. In the present chapter, we summarize the known activities of IL-6 with a special emphasis on regenerative activities, which often depend on the sIL-6R. A designer cytokine called Hyper-IL-6, which is a fusion protein of IL-6 and the sIL-6R, can mimic IL-6 trans-signaling responses in vitro and in vivo with considerably higher efficacy than the combination of the natural proteins IL-6 and sIL-6R. We present recent examples from animal models in which the therapeutic potential of Hyper-IL-6 has been evaluated. We propose that Hyper-IL-6 can be used to induce potent regeneration responses in liver, kidney, and other tissues and therefore will be a novel therapeutic approach in regenerative medicine.[Abstract] [Full Text] [Related] [New Search]