These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The effect of storage time and freeze-thaw cycles on the stability of serum samples. Author: Cuhadar S, Koseoglu M, Atay A, Dirican A. Journal: Biochem Med (Zagreb); 2013; 23(1):70-7. PubMed ID: 23457767. Abstract: INTRODUCTION: Optimal storage of serum specimens in central laboratories for a long period for multicenter reference interval studies, or epidemiologic studies remains to be determined. We aimed to examine the analytical stability of chemistry analytes following numerous freeze-thaw and long-term storage. MATERIALS AND METHODS: Serum samples were obtained from 15 patients. Following baseline measurement, sera of each subject were aliquoted and stored at -20 degrees C for two experiments. A group of sera were kept frozen for up to 1, 2 and 3 months and then analyzed for stability. The other experiment consisted of one to ten times of freeze and thaw cycles. Total of 17 chemistry analytes were assayed at each time point. The results were compared with those obtained from the initial analysis of fresh samples. Median or mean changes from baseline (T(0)) concentrations were evaluated both statistically and clinically according to the desirable bias. RESULTS: Of the analytes studied, aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatine kinase (CK), gamma-glutamyl transferase (GGT), direct bilirubin, glucose, creatinine, cholesterol, triglycerides, high density lipoprotein (HDL) were stable in all conditions. Blood urea nitrogen (BUN), uric acid, total protein, albumin, total bilirubin, calcium, lactate dehydrogenase (LD) were changed significantly (P < 0.005). CONCLUSIONS: As a result, common clinical chemistry analytes, with considering the variability of unstable analytes, showed adequote stability after 3 months of storage in sera at -20 degrees C, or up to ten times of freeze-thaw cycle. All the same, such analysis can only be performed for exceptional cases, and this should be taken into account while planning studies.[Abstract] [Full Text] [Related] [New Search]