These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Biopsy validation of 18F-DOPA PET and biodistribution in gliomas for neurosurgical planning and radiotherapy target delineation: results of a prospective pilot study. Author: Pafundi DH, Laack NN, Youland RS, Parney IF, Lowe VJ, Giannini C, Kemp BJ, Grams MP, Morris JM, Hoover JM, Hu LS, Sarkaria JN, Brinkmann DH. Journal: Neuro Oncol; 2013 Aug; 15(8):1058-67. PubMed ID: 23460322. Abstract: BACKGROUND: Delineation of glioma extent for surgical or radiotherapy planning is routinely based on MRI. There is increasing awareness that contrast enhancement on T1-weighted images (T1-CE) may not reflect the entire extent of disease. The amino acid tracer (18)F-DOPA (3,4-dihydroxy-6-[18F] fluoro-l-phenylalanine) has a high tumor-to-background signal and high sensitivity for glioma imaging. This study compares (18)F-DOPA PET against conventional MRI for neurosurgical biopsy targeting, resection planning, and radiotherapy target volume delineation. METHODS: Conventional MR and (18)F-DOPA PET/CT images were acquired in 10 patients with suspected malignant brain tumors. One to 3 biopsy locations per patient were chosen in regions of concordant and discordant (18)F-DOPA uptake and MR contrast enhancement. Histopathology was reviewed on 23 biopsies. (18)F-DOPA PET was quantified using standardized uptake values (SUV) and tumor-to-normal hemispheric tissue (T/N) ratios. RESULTS: Pathologic review confirmed glioma in 22 of 23 biopsy specimens. Thirteen of 16 high-grade biopsy specimens were obtained from regions of elevated (18)F-DOPA uptake, while T1-CE was present in only 6 of those 16 samples. Optimal (18)F-DOPA PET thresholds corresponding to high-grade disease based on histopathology were calculated as T/N > 2.0. In every patient, (18)F-DOPA uptake regions with T/N > 2.0 extended beyond T1-CE up to a maximum of 3.5 cm. SUV was found to correlate with grade and cellularity. CONCLUSIONS: (18)F-DOPA PET SUV(max) may more accurately identify regions of higher-grade/higher-density disease in patients with astrocytomas and will have utility in guiding stereotactic biopsy selection. Using SUV-based thresholds to define high-grade portions of disease may be valuable in delineating radiotherapy boost volumes.[Abstract] [Full Text] [Related] [New Search]