These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Oxidative quenching within photosensitizer-acceptor dyads based on bis(bidentate) phosphine-connected osmium(II) bipyridyl light absorbers and reactive metal sites.
    Author: Eller S, Trettenbrein B, Oberhuber D, Strabler C, Gutmann R, van der Veer WE, Ruetz M, Kopacka H, Obendorf D, Brüggeller P.
    Journal: Inorg Chem Commun; 2012 Sep; 23(6):41-45. PubMed ID: 23471298.
    Abstract:
    For the first time oxidative quenching of OsP2N4 chromophores by reactive PtII or PdII sites containing cis, trans, cis-1,2,3,4-tetrakis(diphenylphosphino)cyclobutane (dppcb) is directly observed despite the presence of a saturated cyclobutane backbone "bridge". This dramatic effect is measured as a sudden temperature-dependent onset of a reduction in phosphorescence lifetime in [Os(bpy)2(dppcb)MCl2](SbF6)2 (M = Pt, 1; Pd, 2). The appearance of this additional energy release is not detectable in [Os(bpy)2(dppcbO2)](PF6)2 (3), where dppcbO2 is cis, trans, cis-1,2-bis(diphenylphosphinoyl)-3,4-bis(diphenylphosphino)cyclobutane. Obviously, the square-planar metal centers in 1 and 2 are responsible for this effect. In line with these observations, the emission quantum yields at room temperature for 1 and 2 are drastically reduced compared with 3. Since this luminescence quenching implies strong intramolecular interaction between the OsII excited states and the acceptor sites and depends on the metal⋯metal distances, also the single crystal X-ray structures of 1-3 are given.
    [Abstract] [Full Text] [Related] [New Search]