These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Microstructure and point defects in CdTe nanowires for photovoltaic applications. Author: Williams BL, Halliday DP, Mendis BG, Durose K. Journal: Nanotechnology; 2013 Apr 05; 24(13):135703. PubMed ID: 23478397. Abstract: Defects in Au-catalysed CdTe nanowires vapour-liquid-solid-grown on polycrystalline underlayers have been critically evaluated. Their low-temperature photoluminescence spectra were dominated by excitonic emission with rarely observed above-gap emission also being recorded. While acceptor bound exciton lines due to monovalent metallic impurities (Ag, Cu or Na) were seen, only deeper, donor-acceptor-pair emission could be attributed to the Au contamination that is expected from the catalyst. Annealing under nitrogen acted to enhance the single crystal-like PL emission, whilst oxidizing and reducing anneals of the type that is used in solar cell device processing caused it to degrade. The incidence of stacking faults, polytypes and twins was related only to the growth axes of the wires (<111> 50%, <112> 30% and <110> 20%), and was not influenced by annealing. The potential electrical activity of the point and extended defects, and the suitability of these nanowire materials (including processing steps) for solar cell applications, is discussed. Overall they have a quality that is superior to that of thin polycrystalline films, although questions remain about recombination due to Au.[Abstract] [Full Text] [Related] [New Search]