These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Establishing lung gas volumes at birth: interaction between positive end-expiratory pressures and tidal volumes in preterm rabbits.
    Author: Wheeler K, Wallace M, Kitchen M, Te Pas A, Fouras A, Islam M, Siew M, Lewis R, Morley C, Davis P, Hooper S.
    Journal: Pediatr Res; 2013 Jun; 73(6):734-41. PubMed ID: 23478642.
    Abstract:
    BACKGROUND: We investigated the effects of positive end-expiratory pressure (PEEP) and tidal volume (VT) on lung aeration, pulmonary mechanics, and the distribution of ventilation immediately after birth using a preterm rabbit model. METHODS: Sixty preterm rabbits (27 d) received volume-targeted positive pressure ventilation from birth, with one of the 12 combinations of PEEP (0, 5, 8, or 10 cm H2O) and VT (4, 8, or 12 ml/kg). Outcomes included functional residual capacity (FRC), peak inflating pressure (PIP), dynamic compliance (Cd), and distribution of ventilation. RESULTS: Increasing PEEP from 0 to 10 cm H2O increased FRC by 4 ml/kg, increased Cd by 0.2 ml/kg/cm H2O, and reduced PIP by 5 cm H2O. Increasing VT from 4 to 12 ml/kg increased FRC by 2 ml/kg, increased Cd by 0.3 ml/kg/cm H2O, and increased PIP by 4 cmH2O. No effect of VT on FRC occurred at 0 or 5 PEEP, and no effect of PEEP occurred at VT = 4 ml/kg. At 0 PEEP, increasing VT increased the proportion of gas entering the smaller apical regions, whereas at 10 PEEP, increasing VT increased the proportion of gas entering basal regions, from 47% to 63%. CONCLUSION: Both PEEP and VT have independent, additive effects on FRC, lung mechanics, and the distribution of ventilation during the immediate newborn period.
    [Abstract] [Full Text] [Related] [New Search]