These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: HMBC-1,n-ADEQUATE spectra calculated from HMBC and 1,n-ADEQUATE spectra.
    Author: Martin GE, Blinov KA, Williamson RT.
    Journal: Magn Reson Chem; 2013 May; 51(5):299-307. PubMed ID: 23483673.
    Abstract:
    Unsymmetrical and generalized indirect covariance processing methods provide a means of mathematically combining pairs of 2D NMR spectra that share a common frequency domain to facilitate the extraction of correlation information. Previous reports have focused on the combination of HSQC spectra with 1,1-, 1,n-, and inverted (1)J(CC) 1,n-ADEQUATE spectra to afford carbon-carbon correlation spectra that allow the extraction of direct ((1)J(CC)), long-range ((n)J(CC), where n ≥ 2), and (1)J(CC)-edited long-range correlation data, respectively. Covariance processing of HMBC and 1,1-ADEQUATE spectra has also recently been reported, allowing convenient, high-sensitivity access to (n)J(CC) correlation data equivalent to the much lower sensitivity n,1-ADEQUATE experiment. Furthermore, HMBC-1,1-ADEQUATE correlations are observed in the F1 frequency domain at the intrinsic chemical shift of the (13)C resonance in question rather than at the double-quantum frequency of the pair of correlated carbons, as visualized by the n,1, and m,n-ADEQUATE experiments, greatly simplifying data interpretation. In an extension of previous work, the covariance processing of HMBC and 1,n-ADEQUATE spectra is now reported. The resulting HMBC-1,n-ADEQUATE spectrum affords long-range carbon-carbon correlation data equivalent to the very low sensitivity m,n-ADEQUATE experiment. In addition to the significantly higher sensitivity of the covariance calculated spectrum, correlations in the HMBC-1,n-ADEQUATE spectrum are again detected at the intrinsic (13)C chemical shifts of the correlated carbons rather than at the double-quantum frequency of the pair of correlated carbons. HMBC-1,n-ADEQUATE spectra can provide correlations ranging from diagonal ((0)J(CC) or diagonal correlations) to (4)J(CC) under normal circumstances to as much as (6)J(CC) in rare instances. The experiment affords the potential means of establishing the structures of severely proton-deficient molecules.
    [Abstract] [Full Text] [Related] [New Search]