These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Loop sequence dictates the secondary structure of a human membrane protein hairpin. Author: Nadeau VG, Deber CM. Journal: Biochemistry; 2013 Apr 09; 52(14):2419-26. PubMed ID: 23488803. Abstract: Membrane proteins adopt two fundamental types of folds in nature: membranes in all organisms harbor α-helical bundles linked by extramembranous loops of varying length, while β-barrel structures are found in the outer membrane of Gram-negative bacteria, mitochondria, and chloroplasts. Here we report that turn-inducing loop mutations in a transmembrane hairpin induce the conversion of an α-helical hairpin to β-sheet oligomers in membrane environments. On the basis of an observation of a sequence bias toward Pro and Gly in the turns of native β-barrel membrane proteins, we characterized in sodium dodecyl sulfate (SDS) micelles and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayers several "hairpin" constructs of cystic fibrosis transmembrane conductance regulator transmembrane segments 3 and 4 (TM3-loop-TM4; loop region being (215)IWELLQASA(223)) in which Pro-Gly residues were either inserted or substituted at several positions. Remarkably, suitable positioning of the Pro-Gly doublet caused the adoption of stable β-sheet structures by several mutants in SDS micelles, as shown by circular dichroism spectroscopy, concurrent with a ladder of discrete oligomers observed via SDS-polyacrylamide gel electrophoresis. Reconstitution of wild-type (WT) TM3/4 into POPC vesicles studied by Trp fluorescence, in conjunction with positional quenchers in brominated phospholipids, indicated a transbilayer position for helical WT TM3/4, but likely a largely surface-embedded conformation for the β-sheet mutant with loop region IWPGELLQASA. To the best of our knowledge, such a complete change in the fold with a minimal number of mutations has not been previously observed for a membrane protein. These facile α-helix to β-sheet conversions highlight the contribution of loops to membrane protein structure.[Abstract] [Full Text] [Related] [New Search]