These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Simultaneous 68Ga-DOTATOC PET/MRI in patients with gastroenteropancreatic neuroendocrine tumors: initial results.
    Author: Beiderwellen KJ, Poeppel TD, Hartung-Knemeyer V, Buchbender C, Kuehl H, Bockisch A, Lauenstein TC.
    Journal: Invest Radiol; 2013 May; 48(5):273-9. PubMed ID: 23493121.
    Abstract:
    OBJECTIVES: The aim of this pilot study was to demonstrate the potential of simultaneously acquired 68-Gallium-DOTA-D-Phe1-Tyr3-octreotide (68Ga-DOTATOC) positron emission tomography/magnetic resonance imaging (PET/MRI) in comparison with 68Ga-DOTATOC PET/computed tomography (PET/CT) in patients with known gastroenteropancreatic neuroendocrine tumors (NETs). MATERIALS AND METHODS: Eight patients (4 women and 4 men; mean [SD] age, 54 [17] years; median, 55 years; range 25-74 years) with histopathologically confirmed NET and scheduled 68Ga-DOTATOC PET/CT were prospectively enrolled for an additional integrated PET/MRI scan. Positron emission tomography/computed tomography was performed using a triple-phase contrast-enhanced full-dose protocol. Positron emission tomography/magnetic resonance imaging encompassed a diagnostic, contrast-enhanced whole-body MRI protocol. Two readers separately analyzed the PET/CT and PET/MRI data sets including their subscans in random order regarding lesion localization, count, and characterization on a 4-point ordinal scale (0, not visible; 1, benign; 2, indeterminate; and 3, malignant). In addition, each lesion was rated in consensus on a binary scale (allowing for benign/malignant only). Clinical imaging, existing prior examinations, and histopathology (if available) served as the standard of reference. In PET-positive lesions, the standardized uptake value (SUV max) was measured in consensus. A descriptive, case-oriented data analysis was performed, including determination of frequencies and percentages in detection of malignant, benign, and indeterminate lesions in connection to their localization. In addition, percentages in detection by a singular modality (such as PET, CT, or MRI) were calculated. Interobserver variability was calculated (Cohen's κ). The SUVs in the lesions in PET/CT and PET/MRI were measured, and the correlation coefficient (Pearson, 2-tailed) was calculated. RESULTS: According to the reference standard, 5 of the 8 patients had malignant NET lesions at the time of the examination. A total of 4 patients were correctly identified by PET/CT, with the PET and CT component correctly identifying 3 patients each. All 5 patients positive for NET disease were correctly identified by PET/MRI, with the MRI subscan identifying all 5 patients and the PET subscan identifying 3 patients. All lesions considered as malignant in PET/CT were equally depicted in and considered using PET/MRI. One liver lesion rated as "indetermined" in PET/CT was identified as metastasis in PET/MRI because of a diffusion restriction in diffusion-weighted imaging. Of the 4 lung lesions characterized in PET/CT, only 1 was depicted in PET/MRI. Of the 3 lymph nodes depicted in PET/CT, only 1 was characterized in PET/MRI. Interobserver reliability was equally very good in PET/CT (κ = 0.916) and PET/MRI (κ = 1.0). The SUV max measured in PET/CT and in PET/MRI showed a strong correlation (Pearson correlation coefficient, 0.996). CONCLUSIONS: This pilot study demonstrates the potential of 68Ga-DOTATOC PET/MRI in patients with gastroenteropancreatic NET, with special advantages in the characterization of abdominal lesions yet certain weaknesses inherent to MRI, such as lung metastases and hypersclerotic bone lesions.
    [Abstract] [Full Text] [Related] [New Search]