These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Design of an interpolyelectrolyte gastroretentive matrix for the site-specific zero-order delivery of levodopa in Parkinson's disease. Author: Ngwuluka NC, Choonara YE, Modi G, du Toit LC, Kumar P, Ndesendo VM, Pillay V. Journal: AAPS PharmSciTech; 2013 Jun; 14(2):605-19. PubMed ID: 23494468. Abstract: This study focused on developing a gastroretentive drug delivery system employing a triple-mechanism interpolyelectrolyte complex (IPEC) matrix comprising high density, swelling, and bioadhesiveness for the enhanced site-specific zero-order delivery of levodopa in Parkinson's disease. An IPEC was synthesized and directly compressed into a levodopa-loaded matrix employing pharmaceutical technology and evaluated with respect to its physicochemical and physicomechanical properties and in vitro drug release. The IPEC-based matrix displayed superior mechanical properties in terms of matrix hardness (34-39 N/mm) and matrix resilience (44-47%) when different normality's of solvent and blending ratios were employed. Fourier transform infrared spectroscopy confirmed the formation of the IPEC. The formulations exhibited pH and density dependence with desirable gastro-adhesion with Peak Force of Adhesion ranging between 0.15 and 0.21 N/mm, densities from 1.43 to 1.54 g/cm(3) and swellability values of 177-234%. The IPEC-based gastroretentive matrix was capable of providing site-specific levodopa release with zero-order kinetics corroborated by detailed mathematical and molecular modeling studies. Overall, results from this study have shown that the IPEC-based matrix has the potential to improve the absorption and subsequent bioavailability of narrow absorption window drugs, such as levodopa with constant and sustained drug delivery.[Abstract] [Full Text] [Related] [New Search]