These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Coupling ion-exchangers with inexpensive activated carbon fiber electrodes to enhance the performance of capacitive deionization cells for domestic wastewater desalination.
    Author: Liang P, Yuan L, Yang X, Zhou S, Huang X.
    Journal: Water Res; 2013 May 01; 47(7):2523-30. PubMed ID: 23497976.
    Abstract:
    A capacitive deionization (CDI) cell was built with electrodes made of an inexpensive commercial activated carbon fiber (ACF), and then modified by incorporating ion-exchangers into the cell compartment. Three modified CDI designs were tested: MCDI - a CDI with electrodes covered by ion-exchange membranes (IEMs) of the same polarity, FCDI - a CDI with electrodes covered by ion-exchange felts (IEFs), and R-MCDI - an MCDI with cell chamber packed with ion-exchange resin (IER) granules. The cell was operated in the batch reactor mode with an initial salt concentration of 1000 mg/L NaCl, a typical level of domestic wastewater. The desalination tests involved investigations of two consecutive operation stages of CDIs: electrical adsorption (at an applied voltage of 1.2 V) and desorption [including short circuit (SC) desorption and discharge (DC) desorption]. The R-MCDI showed the highest electric adsorption as measured in the present study by desalination rate [670 ± 20 mg/(L h)] and salt removal efficiency (90 ± 1%) at 60 min, followed by the MCDI [440 ± 15 mg/(L h) and 60 ± 2%, respectively]. The superior desalination performance of the R-MCDI over other designs was also affirmed by its highest charge efficiency (110 ± 7%) and fastest desorption rates at both the SC [1960 ± 15 mg/(L·h)] and DC [3000 ± 20 mg/(L·h)] modes. The desalination rate and salt removal efficiency of the R-MCDI increased from ∼270 mg/(L h) and 83% to ∼650 mg/(L h) and 98% respectively when the applied voltage increased from 0.6 V to 1.4 V, while decreased slightly when lowering the salt water flow rate that fed into the cell. The packing of IER granules in the R-MCDI provided additional surface area for ions transfer; meanwhile, according to the results of electrochemical impedance spectroscopy (EIS) analysis, it substantially lower down the R-MCDI's ohmic resistance, resulting in improved desalination performance.
    [Abstract] [Full Text] [Related] [New Search]