These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: MRI multiparametric hemodynamic characterization of the normal brain.
    Author: Artzi M, Aizenstein O, Abramovitch R, Bashat DB.
    Journal: Neuroscience; 2013 Jun 14; 240():269-76. PubMed ID: 23500143.
    Abstract:
    Characterization of the brain's vascular system is of major clinical importance in the assessment of patients with cerebrovascular disease. The aim of this study was to characterize brain hemodynamics using multiparametric methods and to obtain reference values from the healthy brain. A multimodal magnetic resonance imaging (MRI) study was performed in twenty healthy subjects, including dynamic susceptibility contrast imaging and blood oxygen level dependence (BOLD) during hypercapnia and carbogen challenges. Brain tissues were defined using unsupervised cluster analysis based on these three methods, and several hemodynamic parameters were calculated for gray matter (GM), white matter (WM), blood vessels and dura (BVD); the three main vascular territories within the GM; and arteries and veins defined within the BVD cluster. The carbogen challenge produced a BOLD signal twice as high as the hypercapnia challenge, in all brain tissues. The three brain tissues differed significantly from each other in their hemodynamic characteristics, supporting the graded vascularity of the tissues, with BVD>GM>WM. Within the GM cluster, a significant delay of ∼1.2 s of the bolus arrival time was detected within the posterior cerebral artery territory relative to the middle and anterior cerebral artery territories. No differences were detected between right and left middle cerebral artery territories for all hemodynamic parameters. Within the BVD cluster, a significant delay of ∼1.9 s of the bolus arrival time was detected within the veins relative to the arteries. This parameter enabled to differentiate between the various blood vessels, including arteries, veins and choroid plexus. This study provides reference values for several hemodynamic parameters, obtained from healthy brains, and may be clinically important in the assessment of patients with various vascular pathologies.
    [Abstract] [Full Text] [Related] [New Search]