These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Licochalcone A regulates hepatic lipid metabolism through activation of AMP-activated protein kinase.
    Author: Quan HY, Kim SJ, Kim DY, Jo HK, Kim GW, Chung SH.
    Journal: Fitoterapia; 2013 Apr; 86():208-16. PubMed ID: 23500383.
    Abstract:
    Licochalcone A (LA) is a major phenolic ingredient of Glycyrrhiza plant. Although multiple pharmacological activities of LA have been reported, effect on hepatic lipid metabolism is unknown yet. The present study showed LA to suppress the hepatic triglyceride accumulation in HepG2 cells and ICR mice fed on a high fat diet (HFD). LA inhibited lipogenesis via suppression of sterol regulatory element-binding protein 1c (SREBP1c) and its target enzymes (stearoyl-CoA desaturase 1, fatty acid synthase and glycerol-3-phosphate acyltransferase) transcription. In addition, LA up-regulated gene expression of proteins such as peroxisome proliferator-activated receptor α (PPARα) and fatty acid transporter (FAT/CD36), which are responsible for lipolysis and fatty acid transport, respectively. These effects were mediated through activation of AMP-activated protein kinase (AMPK), and were abrogated when HepG2 cells were treated with an AMPK inhibitor, compound C. To explore how LA activates AMPK, oxygen consumption rate and ATP levels were measured in HepG2 cells. LA significantly inhibited the mitochondrial respiration and ATP levels, suggesting that LA activated AMPK indirectly. In animal study, LA (5 and 10mg/kg) was orally administered to six-week-old mice once a day for 3 weeks. In vitro results were likely to hold true in vivo experiment, as LA markedly lowered the triglyceride levels and activated AMPK signaling pathway in the liver of ICR mice fed on a HFD. In conclusion, the current study suggests that LA suppressed hepatic triglyceride accumulation through modulation of AMPK-SREBP signaling pathway and thus LA may be a potential therapeutic agent for treating fatty liver disease.
    [Abstract] [Full Text] [Related] [New Search]