These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The use of biopartitioning micellar chromatography and immobilized artificial membrane column for in silico and in vitro determination of blood-brain barrier penetration of phenols. Author: Stępnik KE, Malinowska I. Journal: J Chromatogr A; 2013 Apr 19; 1286():127-36. PubMed ID: 23506703. Abstract: Biopartitioning Micellar Chromatography (BMC) is a mode of micellar liquid chromatography that uses C18 stationary phases and micellar mobile phases of Brij35 under adequate experimental conditions and can be useful to mimic human drug absorption, blood-brain barrier distribution or partitioning processes in biological systems. BMC system can be useful in constructing good predictive models because the characteristics of the BMC system are similar to biological barriers and extracellular fluids. Immobilized Artificial Membrane (IAM) chromatography uses stationary phase which consists of a monolayer of phosphatidylcholine covalently immobilized on an inert silica support. IAM columns are thought to mimic very closely a membrane bilayer and are used in a HPLC system with a physiological buffer as eluent. In this paper the usefulness of BMC and IAM system for in silico and in vitro determination of blood-brain barrier (BBB) penetration of phenols has been demonstrated. The most important pharmacokinetic parameters of brain have been obtained for the determination of BBB penetration, i.e. BBB permeability - surface area product (PS), usually given as a logPS, brain/plasma equilibration rate (log(PS×fu,brain)) and fraction unbound in plasma (Fu). Moreover, the relationships between retention of eighteen phenols and different parameters of molecular size, lipophilicity and BBB penetration were studied. Extrapolated to pure water values of the logarithms of retention factors (logkw) have been compared with the corresponding octanol-water partition coefficient (logPo-w) values of the solutes. In addition, different physicochemical parameters from Foley's equation for BMC system have been collated with the chromatographic data. The Linear Solvation Energy Relationship (LSER) using Abraham model for the describing of phenols penetration across BBB has been used. Four equations were developed as a multiple linear regression using retention data from IAM and BMC system (QRAR models) and molecular volume parameter (Vm) and Abraham descriptors to correlate the logBB values. Moreover, in order to establish the relationships between different variables, the principal components analysis (PCA) has been done. The results of PCA were obtained using chromatographic data from IAM and BMC systems as well as from the structures of tested phenols. The four parameters: logkwIAM(exp), logkwBMC(exp), analyte-micelle association constant (Kma) and logPo-w have been checked.[Abstract] [Full Text] [Related] [New Search]