These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Differential fate of metabolism of a disperse dye by microorganisms Galactomyces geotrichum and Brevibacillus laterosporus and their consortium GG-BL. Author: Waghmode TR, Kurade MB, Kagalkar AN, Govindwar SP. Journal: J Environ Sci (China); 2012; 24(7):1295-304. PubMed ID: 23513451. Abstract: The present work aims to evaluate Brown 3 REL degrading potential of developed microbial consortium GG-BL using two microbial cultures, Galactomyces geotrichum MTCC 1360 (GG) and Brevibacillus laterosporus MTCC 2298 (BL). Microbial consortium GG-BL showed 100% decolorization of a dye Brown 3 REL, while individually G. geotrichum MTCC 1360 and B. laterosporus MTCC 2298 showed 26% and 86% decolorization under aerobic condition (shaking) respectively. Measurements of biochemical oxygen demand (BOD) (76%) and chemical oxygen demand (COD) (68%) were done after decolorization by consortium GG-BL. No induction in activities of oxidoreductive enzymes found in G. geotrichum while B. laterosporus showed induction of veratryl alcohol oxidase, Nicotineamide adenine dinucleotide-dichlorophenol indophenol (NADH-DCIP) reductase and riboflavin reductase indicating their role in dye metabolism. Consortium GG-BL showed induction in the activities of laccase, veratryl alcohol oxidase, tyrosinase, NADH-DCIP reductase and riboflavin reductase. Two different sets of induced enzymes from G. geotrichum and B. laterosporus work together in consortium GG-BL resulting in faster degradation of dye. The degradation of Brown 3 REL was analyzed using high performance thin layer chromatography (HPTLC), high performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FT-IR) and gas chromatography mass spectroscopy (GC-MS). Phytotoxicity study revealed that metabolites formed after degradation was significantly less toxic in nature.[Abstract] [Full Text] [Related] [New Search]