These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Oxyanion hole stabilization by C-H···O interaction in a transition state--a three-point interaction model for Cinchona alkaloid-catalyzed asymmetric methanolysis of meso-cyclic anhydrides. Author: Yang H, Wong MW. Journal: J Am Chem Soc; 2013 Apr 17; 135(15):5808-18. PubMed ID: 23517148. Abstract: Oxyanion holes are commonly found in many enzyme structures. They are crucial for the stabilization of high-energy oxyanion intermediates or transition states through hydrogen bonding. Typical functionalities found in enzyme oxyanion holes or chemically designed oxyanion-hole mimics are N-H and O-H groups. Through DFT calculations, we show that asymmetric methanolysis of meso-cyclic anhydrides (AMMA) catalyzed by a class of cinchona alkaloid catalysts involves an oxyanion hole consisting of purely C-H functionality. This C-H oxyanion hole is found to play a pivotal role for stabilizing the developing oxyanion, via C-H···O hydrogen bonds, in our newly proposed three-point interaction transition-state model for AMMA reactions, and is the key reason for the catalyst to adopt the gauche-open conformation in the transition state. Predicted enantioselectivities of three cinchona alkaloid catalysts, namely DHQD-PHN, DHQD-MEQ, and DHQD-CLB, based on calculations of our transition-state model, agree well with experimental findings.[Abstract] [Full Text] [Related] [New Search]