These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Eosinophil recruitment to nasal nerves after allergen challenge in allergic rhinitis.
    Author: Thornton MA, Akasheh N, Walsh MT, Moloney M, Sheahan PO, Smyth CM, Walsh RM, Morgan RM, Curran DR, Walsh MT, Gleich GJ, Costello RW.
    Journal: Clin Immunol; 2013 Apr; 147(1):50-57. PubMed ID: 23518598.
    Abstract:
    In allergen challenged animal models, eosinophils localize to airway nerves leading to vagally-mediated hyperreactivity. We hypothesized that in allergic rhinitis eosinophils recruited to nasal nerves resulted in neural hyperreactivity. Patients with persistent allergic rhinitis (n=12), seasonal allergic rhinitis (n=7) and controls (n=10) were studied. Inferior nasal turbinate biopsies were obtained before, 8 and 48h after allergen challenge. Eight hours after allergen challenge eosinophils localized to nerves in both rhinitis groups; this was sustained through 48h. Bradykinin challenge, with secretion collection on the contralateral side, was performed to demonstrate nasal nerve reflexes. Twenty fourhours after allergen challenge, bradykinin induced a significant increase in secretions, indicating nasal hyperreactivity. Histological studies showed that nasal nerves expressed both vascular cell adhesion molecule-1 (VCAM-1) and chemokine (C-C motif) ligand 26 (CCL-26). Hence, after allergen challenge eosinophils are recruited and retained at nerves and so may be a mechanism for neural hyperreactivity.
    [Abstract] [Full Text] [Related] [New Search]