These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Functional cooperation of miR-125a, miR-125b, and miR-205 in entinostat-induced downregulation of erbB2/erbB3 and apoptosis in breast cancer cells. Author: Wang S, Huang J, Lyu H, Lee CK, Tan J, Wang J, Liu B. Journal: Cell Death Dis; 2013 Mar 21; 4(3):e556. PubMed ID: 23519125. Abstract: We reported that the class I HDAC inhibitor entinostat induced apoptosis in erbB2-overexpressing breast cancer cells via downregulation of erbB2 and erbB3. Here, we study the molecular mechanism by which entinostat dual-targets erbB2/erbB3. Treatment with entinostat had no effect on erbB2/erbB3 mRNA, suggesting a transcription-independent mechanism. Entinostat decreased endogenous but not exogenous erbB2/erbB3, indicating it did not alter their protein stability. We hypothesized that entinostat might inhibit erbB2/erbB3 protein translation via specific miRNAs. Indeed, entinostat significantly upregulated miR-125a, miR-125b, and miR-205, that have been reported to target erbB2 and/or erbB3. Specific inhibitors were then used to determine whether these miRNAs had a causal role in entinostat-induced downregulation of erbB2/erbB3 and apoptosis. Transfection with a single inhibitor dramatically abrogated entinostat induction of miR-125a, miR-125b, or miR-205; however, none of the inhibitors blocked entinostat action on erbB2/erbB3. In contrast, co-transfection with two inhibitors not only reduced their corresponding miRNAs, but also significantly abrogated entinostat-mediated reduction of erbB2/erbB3. Moreover, simultaneous inhibition of two, but not one miRNA significantly attenuated entinostat-induced apoptosis. Interestingly, although the other HDAC inhibitors, such as SAHA and panobinostat, exhibited activity as potent as entinostat to induce growth inhibition and apoptosis in erbB2-overexpressing breast cancer cells, they had no significant effects on the three miRNAs. Instead, both SAHA- and panobinostat-decreased erbB2/erbB3 expression correlated with the reduction of their mRNA levels. Collectively, we demonstrate that entinostat specifically induces expression of miR-125a, miR-125b, and miR-205, which act in concert to downregulate erbB2/erbB3 in breast cancer cells. Our data suggest that epigenetic regulation via miRNA-dependent or -independent mechanisms may represent a novel approach to treat breast cancer patients with erbB2-overexpressing tumors.[Abstract] [Full Text] [Related] [New Search]