These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Smaug: an unexpected journey into the mechanisms of post-transcriptional regulation.
    Author: Pinder BD, Smibert CA.
    Journal: Fly (Austin); 2013; 7(3):142-5. PubMed ID: 23519205.
    Abstract:
    Drosophila Smaug is a sequence-specific RNA-binding protein that can repress the translation and induce the degradation of target mRNAs in the early Drosophila embryo. Our recent work has uncovered a new mechanism of Smaug-mediated translational repression whereby it interacts with and recruits the Argonaute 1 (Ago1) protein to an mRNA. Argonaute proteins are typically recruited to mRNAs through an associated small RNA, such as a microRNA (miRNA). Surprisingly, we found that Smaug is able to recruit Ago1 to an mRNA in a miRNA-independent manner. This work suggests that other RNA-binding proteins are likely to employ a similar mechanism of miRNA-independent Ago recruitment to control mRNA expression. Our work also adds yet another mechanism to the list that Smaug can use to regulate its targets and here we discuss some of the issues that are raised by Smaug's multi-functional nature.
    [Abstract] [Full Text] [Related] [New Search]