These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Speech recognition for bilaterally asymmetric and symmetric hearing aid microphone modes in simulated classroom environments. Author: Ricketts TA, Picou EM. Journal: Ear Hear; 2013 Sep; 34(5):601-9. PubMed ID: 23524508. Abstract: OBJECTIVES: This study aimed to evaluate the potential utility of asymmetrical and symmetrical directional hearing aid fittings for school-age children in simulated classroom environments. This study also aimed to evaluate speech recognition performance of children with normal hearing in the same listening environments. DESIGN: Two groups of school-age children 11 to 17 years of age participated in this study. Twenty participants had normal hearing, and 29 participants had sensorineural hearing loss. Participants with hearing loss were fitted with behind-the-ear hearing aids with clinically appropriate venting and were tested in 3 hearing aid configurations: bilateral omnidirectional, bilateral directional, and asymmetrical directional microphones. Speech recognition testing was completed in each microphone configuration in 3 environments: Talker-Front, Talker-Back, and Question-Answer situations. During testing, the location of the speech signal changed, but participants were always seated in a noisy, moderately reverberant classroom-like room. RESULTS: For all conditions, results revealed expected effects of directional microphones on speech recognition performance. When the signal of interest was in front of the listener, bilateral directional microphone was best, and when the signal of interest was behind the listener, bilateral omnidirectional microphone was best. Performance with asymmetric directional microphones was between the 2 symmetrical conditions. The magnitudes of directional benefits and decrements were not significantly correlated. In comparison with their peers with normal hearing, children with hearing loss performed similarly to their peers with normal hearing when fitted with directional microphones and the speech was from the front. In contrast, children with normal hearing still outperformed children with hearing loss if the speech originated from behind, even when the children were fitted with the optimal hearing aid microphone mode for the situation. CONCLUSIONS: Bilateral directional microphones can be effective in improving speech recognition performance for children in the classroom, as long as child is facing the talker of interest. Bilateral directional microphones, however, can impair performance if the signal originates from behind a listener. However, these data suggest that the magnitude of decrement is not predictable from an individual's benefit. The results re-emphasize the importance of appropriate switching between microphone modes so children can take full advantage of directional benefits without being hurt by directional decrements. An asymmetric fitting limits decrements, but does not lead to maximum speech recognition scores when compared with the optimal symmetrical fitting. Therefore, the asymmetric mode may not be the best option as a default fitting for children in a classroom environment. While directional microphones improve performance for children with hearing loss, their performance in most conditions continues to be impaired relative to their normal-hearing peers, particularly when the signals of interest originate from behind or from an unpredictable location.[Abstract] [Full Text] [Related] [New Search]