These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A cyclic adenosine 3',5'-monophosphate-dependent histone kinase from pig brain. Purification and some properties of the enzyme.
    Author: Nesterova MV, Sashchenko LP, Vasiliev VY, Severin ES.
    Journal: Biochim Biophys Acta; 1975 Feb 19; 377(2):271-81. PubMed ID: 235302.
    Abstract:
    A cyclic adenosine 3',5'-monophosphate-dependent histone kinase (ATP: protein phosphotransferase, EC 2.7.1.37) was isolated from pig brain. The enzyme has been purified 1140-fold; it is homogeneous on polyacrylamide gel electrophoresis and gel filtration. The estimated molecular weight of the enzyme is 120 000. Histone kinase dissociates into a catalytic subunit and a regulatory one (molecular weights 40 000 and 90 000, respectively). The catalytic subunit has been obtained in homogeneous state as evidenced by sodium dodecylsulphate-polyacrylamide gel electrophoresis. At all purification steps, enzymatic activity is stimulated 5-fold by cyclic AMP. An apparent Km value for cyclic AMP is about 3.3 - 10- minus 7 M. In the presence of cyclic AMP(5 - 10- minus 6 M), the Km value for ATP and F1 histone were 1.2 - 10- minus five and 3 - 10- minus 5 M, respectively. Optimum pH value for histone kinase is 6.5, its isoelectric point is situated at pH 4.6. The purified enzyme displays high specificity for the lysine-rich and moderately lysine-rich histones F1, F2a2 and F2b. Arginine-rich histones and other known protein substrates for cyclic AMP-dependent protein kinases (casein, Escherichia coli RNA polymerase, etc.) are extremely poor substrates for this enzyme.
    [Abstract] [Full Text] [Related] [New Search]