These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Silver nanoparticle-enhanced fluorescence resonance energy transfer sensor for human platelet-derived growth factor-BB detection. Author: Li H, Wang M, Wang C, Li W, Qiang W, Xu D. Journal: Anal Chem; 2013 May 07; 85(9):4492-9. PubMed ID: 23531211. Abstract: A silver nanoparticle (AgNP)-enhanced fluorescence resonance energy transfer (FRET) sensing system is designed for the sensitive detection of human platelet-derived growth factor-BB (PDGF-BB). Fluorophore-functionalized aptamers and quencher-carrying strands hybridized in duplex are coupled with streptavidin (SA)-functionalized nanoparticles to form a AgNP-enhanced FRET sensor. The resulting sensor shows lower background fluorescence intensity in the duplex state due to the FRET effect between fluorophores and quenchers. Upon the addition of PDGF-BB, the quencher-carrying strands (BHQ-2) of the duplex are displaced leading to the disruption of the FRET effect. As a result, the fluorescent intensity of the fluorophore-aptamer within the proximity of the AgNP is increased. When compared to the gold nanoparticle (AuNP)-based FRET and bare FRET sensors, the AgNP-based FRET sensor showed remarkable increase in fluorescence intensity, target specificity, and sensitivity. Results also show versatility of the AgNP in the enhancement of sensitivity and selectivity of the FRET sensor. In addition, a good linear response was obtained when the PDGF-BB concentrations are in the ranges of 100-500 and 6.2-50 ng/mL with the detection limit of 0.8 ng/mL.[Abstract] [Full Text] [Related] [New Search]