These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Sporicidal efficacy of pH-adjusted bleach for control of bioburden on production facility surfaces.
    Author: Frazer AC, Smyth JN, Bhupathiraju VK.
    Journal: J Ind Microbiol Biotechnol; 2013 Jun; 40(6):601-11. PubMed ID: 23532317.
    Abstract:
    pH-adjusted bleach was one of the agents used to disinfect contaminated public buildings in the USA following the 2001 bioterrorist attack with Bacillus anthracis spores. A USEPA fact sheet describes the preparation of pH-adjusted bleach by combining diluted sodium hypochlorite (NaOCl) with a controlled amount of 5 % acetic acid. This paper reports a modification of this procedure to qualify the use of pH-adjusted bleach for routine disinfection of cleanroom surfaces in pharmaceutical manufacturing facilities whenever a short contact time is desirable or there is a need for enhanced germicidal or sporicidal activity. Adjustment of pH was obtained reproducibly with either acetic acid or HCl, confirming the feasibility of developing standard procedures for the controlled addition of acid to diluted NaOCl solutions without compromising operator safety and convenience. Efficacy testing using spores from an in-house isolate of Bacillus pumilus confirmed that NaOCl solutions in the pH 5-8 range have much greater sporicidal activity on surfaces than do unadjusted alkaline solutions (pH > 11). With a contact time of 0.5 min, the log10 reduction in spore viable counts was >5.4 for the five representative surfaces tested relative to untreated controls. Solutions of pH-adjusted NaOCl are known to be less stable than unadjusted alkaline solutions. Stability studies were performed by monitoring sporicidal efficacy, level of free available chlorine (FAC), and pH. Testing included several NaOCl concentrations and adjustment to different starting pHs. The efficacy of pH-adjusted solutions persisted in open containers for at least 12 h even though some FAC degradation occurred. In addition, solutions of 0.29 or 0.50 % NaOCl stored at room temperature protected from light retained efficacy for at least 4 weeks, indicating that short-term storage of solutions is possible following pH adjustment. The inorganic chemical degradation of pH-adjusted NaOCl solutions generates chlorate ion, an undesirable by-product. A comparison of chemical stability for 0.12, 0.25, and 0.50 % NaOCl solutions adjusted to different initial pHs indicated that the least chlorate formation occurred with 0.12 % NaOCl.
    [Abstract] [Full Text] [Related] [New Search]