These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: [The effect of potential-dependent potassium uptake on membrane potential in rat brain mitochondria].
    Author: Akopova OV, Nosar' VI, Kolchinskaia LI, Man'kovskaia IN, Malysheva MK, Sagach VF.
    Journal: Ukr Biokhim Zh (1999); 2013; 85(1):33-41. PubMed ID: 23534288.
    Abstract:
    The effect of potential-dependent potassium uptake on the transmembrane potential difference (DeltaPsi(m)) in rat brain mitochondria has been studied. It was shown that in potassium concentration range of 0-120 mM the potential-dependent K(+)-uptake into matrix leads to the increase in respiration rate and mitochondrial depolarization. ATP-dependent potassium channel (K+(ATP)-channel) blockers, glibenclamide and 5-hydroxydecanoate, block approximately 35% of potential-dependent potassium uptake in the brain mitochondria. It was shown that K+(ATP)-channel blockage results in membrane repolarization by approximately 20% of control, which is consistent with experimental dependence of DeltaPsi(m) on the rate of potential-dependent potassium uptake. Obtained experimental data give the evidence that functional activity of K+(ATP)-channel is physiologically important in the regulation of membrane potential and energy-dependent processes in brain mitochondria.
    [Abstract] [Full Text] [Related] [New Search]