These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Optimal microscopic systems for long-term imaging of intracellular calcium using a ratiometric genetically-encoded calcium indicator. Author: Miyamoto A, Bannai H, Michikawa T, Mikoshiba K. Journal: Biochem Biophys Res Commun; 2013 May 03; 434(2):252-7. PubMed ID: 23535376. Abstract: Monitoring the pattern of intracellular Ca(2+) signals that control many diverse cellular processes is essential for understanding regulatory mechanisms of cellular functions. Various genetically encoded Ca(2+) indicators (GECIs) are used for monitoring intracellular Ca(2+) changes under several types of microscope systems. However, it has not yet been explored which microscopic system is ideal for long-term imaging of the spatiotemporal patterns of Ca(2+) signals using GECIs. We here compared the Ca(2+) signals reported by a fluorescence resonance energy transfer (FRET)-based ratiometric GECI, yellow cameleon 3.60 (YC3.60), stably expressed in DT40 B lymphocytes, using three different imaging systems. These systems included a wide-field fluorescent microscope, a multipoint scanning confocal system, and a single-point scanning confocal system. The degree of photobleaching and the signal-to-noise ratio of YC3.60 in DT40 cells were highly dependent on the fluorescence excitation method, although the total illumination energy was maintained at a constant level within each of the imaging systems. More strikingly, the Ca(2+) responses evoked by B-cell antigen receptor stimulation in YC3.60-expressing DT40 cells were different among the imaging systems, and markedly affected by the illumination power used. Our results suggest that optimization of the imaging system, including illumination and acquisition conditions, is crucial for accurate visualization of intracellular Ca(2+) signals.[Abstract] [Full Text] [Related] [New Search]