These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Protein phosphatase 2A and DNA-dependent protein kinase are involved in mediating rapamycin-induced Akt phosphorylation. Author: Li Y, Wang X, Yue P, Tao H, Ramalingam SS, Owonikoko TK, Deng X, Wang Y, Fu H, Khuri FR, Sun SY. Journal: J Biol Chem; 2013 May 10; 288(19):13215-24. PubMed ID: 23536185. Abstract: BACKGROUND: The mechanisms underlying rapamycin-induced Akt phosphorylation have not been fully elucidated. RESULTS: Inhibition of PP2A or DNA-PK attenuates or abrogates rapamycin-induced Akt phosphorylation and co-inhibition of mTOR and DNA-PK enhances anticancer activity. CONCLUSION: PP2A-dependent and DNA-PK-mediated mechanism is involved in rapamycin-induced Akt phosphorylation. SIGNIFICANCE: A previously unknown mechanism underlying rapamycin-induced Akt phosphorylation and a novel strategy to enhance mTOR-targeted cancer therapy may be suggested. Inhibition of mammalian target of rapamycin complex 1 (mTORC1), for example with rapamycin, increases Akt phosphorylation while inhibiting mTORC1 signaling. However, the underlying mechanisms have not been fully elucidated. The current study has uncovered a previously unknown mechanism underlying rapamycin-induced Akt phosphorylation involving protein phosphatase 2A (PP2A)-dependent DNA protein kinase (DNA-PK) activation. In several cancer cell lines, inhibition of PP2A with okadaic acid, fostriecin, small T antigen, or PP2A knockdown abrogated rapamycin-induced Akt phosphorylation, and rapamycin increased PP2A activity. Chemical inhibition of DNA-PK, knockdown or deficiency of DNA-PK catalytic subunit (DNA-PKcs), or knock-out of the DNA-PK component Ku86 inhibited rapamycin-induced Akt phosphorylation. Exposure of cancer cells to rapamycin increased DNA-PK activity, and gene silencing-mediated PP2A inhibition attenuated rapamycin-induced DNA-PK activity. Collectively these results suggest that rapamycin induces PP2A-dependent and DNA-PK-mediated Akt phosphorylation. Accordingly, simultaneous inhibition of mTOR and DNA-PK did not stimulate Akt activity and synergistically inhibited the growth of cancer cells both in vitro and in vivo. Thus, our findings also suggest a novel strategy to enhance mTOR-targeted cancer therapy by co-targeting DNA-PK.[Abstract] [Full Text] [Related] [New Search]