These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: UV-irradiated 7-dehydrocholesterol coating on polystyrene surfaces is converted to active vitamin D by osteoblastic MC3T3-E1 cells.
    Author: Satué M, Córdoba A, Ramis JM, Monjo M.
    Journal: Photochem Photobiol Sci; 2013 Jun; 12(6):1025-35. PubMed ID: 23538933.
    Abstract:
    The aim of the present study was to determine the effects of UV irradiation on the conversion of 7-dehydrocholesterol (7-DHC), which has been coated onto a polystyrene surface, to cholecalciferol (D3), and the resulting effect on the formation of vitamin D (1,25-D3) by MC3T3-E1 cells. The changes in gene expression of the enzymes regulating its hydroxylation, Cyp27b1 and Cyp27a1, were monitored as well as the net effect of the UV-treated 7-DHC coating on cell viability and osteoblast differentiation. MC3T3-E1 cells were found to express the enzymes required for synthesizing active 1,25-D3, and we found a dose-dependent increase in the production of both 25-D3 and 1,25-D3 levels for UV-activated 7-DHC samples unlike UV-untreated ones. Cell viability revealed no cytotoxic effect for any of the treatments, but only for the highest dose of 7-DHC (20 nmol per well) that was UV-irradiated. Furthermore, osteoblast differentiation was increased in cells treated with some of the higher doses of 7-DHC when UV-irradiated, as shown by collagen-I, osterix and osteocalcin relative mRNA levels. The conversion of 7-DHC to preD3 exogenously by UV irradiation and later to 25-D3 by MC3T3-E1 cells was determined for the optimum 7-DHC dose (0.2 nmol per well), i.e. 8.6 ± 0.7% of UV-activated 7-DHC was converted to preD3 and 6.7 ± 2.8% of preD3 was finally converted to 25-D3 under the conditions studied. In conclusion, we demonstrate that an exogenous coating of 7-DHC, when UV-irradiated, can be used to endogenously produce active vitamin D. We hereby provide the scientific basis for UV-activated 7-DHC coating as a feasible approach for implant therapeutics focused on bone regeneration.
    [Abstract] [Full Text] [Related] [New Search]