These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ability of cirrus high-definition spectral-domain optical coherence tomography clock-hour, deviation, and thickness maps in detecting photographic retinal nerve fiber layer abnormalities.
    Author: Hwang YH, Kim YY, Kim HK, Sohn YH.
    Journal: Ophthalmology; 2013 Jul; 120(7):1380-7. PubMed ID: 23541761.
    Abstract:
    PURPOSE: To investigate the ability of clock-hour, deviation, and thickness maps of Cirrus high-definition spectral-domain optical coherence tomography (HD-OCT) in detecting retinal nerve fiber layer (RNFL) defects identified in red-free fundus photographs in eyes with early glaucoma (mean deviation >-6.0 dB). DESIGN: Cross-sectional study. PARTICIPANTS: Two hundred ninety-five eyes with glaucomatous RNFL defects with clear margins observed in red-free fundus photographs and 200 age-, sex-, and refractive error-matched healthy eyes were enrolled. METHODS: The width and location of RNFL defects were evaluated by using the red-free fundus photograph. When a RNFL defect detected by red-free fundus photograph did not present as (1) yellow/red codes in the clock-hour map, (2) yellow/red pixels in the deviation map, or (3) blue/black areas in the thickness map, the event was classified as a misidentification of a photographic RNFL defect by Cirrus HD-OCT. In healthy eyes, the presence of false-positive RNFL color codes of Cirrus HD-OCT maps was investigated. MAIN OUTCOME MEASURES: The prevalence of and factors associated with the (1) misidentification of photographic RNFL defects by Cirrus HD-OCT in eyes with glaucoma and (2) false-positive RNFL color codes of Cirrus HD-OCT maps in healthy eyes were assessed. RESULTS: Among the 295 red-free fundus photographic RNFL defects from 295 eyes with glaucoma, 83 (28.1%), 27 (9.2%), and 0 (0%) defects were misidentified in the clock-hour, deviation, and thickness maps of Cirrus HD-OCT, respectively. Fifty-six defects (19.0%) were misidentified only in the clock-hour map and 27 (9.2%) in both the clock-hour and deviation maps. The misidentification of photographic RNFL defects by Cirrus HD-OCT was associated with a narrower width and a temporal location of RNFL defects (P<0.05). Among the 200 healthy eyes, 25 (12.5%), 30 (15.0%), and 12 (6.0%) eyes had false-positive RNFL color codes in clock-hour, deviation, and thickness maps of Cirrus HD-OCT, respectively. CONCLUSIONS: Among the clock-hour, deviation, and thickness maps obtained with Cirrus HD-OCT, the thickness map showed the best diagnostic ability in detecting photographic RNFL defects. The RNFL thickness map may be a useful tool for the detection of RNFL defects in eyes with early glaucoma.
    [Abstract] [Full Text] [Related] [New Search]