These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cavitation effect on chitosan nanoparticle size: a possible approach to protect drugs from ultrasonic stress. Author: Floris A, Meloni MC, Lai F, Marongiu F, Maccioni AM, Sinico C. Journal: Carbohydr Polym; 2013 Apr 15; 94(1):619-25. PubMed ID: 23544582. Abstract: The objective of this study was to verify the influence of different modes of ultrasonic radiation on both the mean diameter and the polydispersity index (PI) of chitosan (CH) nanoparticles, which were prepared by means of the ionotropic gelation method. The variations in duration, intensity and mode of cycle of ultrasonic radiation allowed us to highlight several optimal treatments in order to obtain a potential carrier for site-specific drug delivery. Despite the high utility, ultrasound may be a risk factor for sensitive drug-loaded nanoparticles; in order to protect the drug from thermal or mechanical stress, the effects of ultrasonic radiation only on the CH dispersion (instead of the chitosan/tripolyphosphate (TPP) mixture) were studied, without damaging the drug added to the TPP solution. The increase of the wave amplitude, mode of cycle and time of sonication decreased the particle mean diameter; moreover, the mode of cycle showed a greater effect than the other parameters on the PI of the nanoparticle system. Both the mean diameter and the PI of CH nanoparticles increased with increasing CH concentration. The application of ultrasound only on the CH dispersion showed interesting results, particularly in regard to formulations prepared from low and medium molecular weight chitosan.[Abstract] [Full Text] [Related] [New Search]