These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Immobilization and characterization of carbonic anhydrase purified from E. coli MO1 and its influence on CO₂ sequestration. Author: Oviya M, Sukumaran V, Giri SS. Journal: World J Microbiol Biotechnol; 2013 Oct; 29(10):1813-20. PubMed ID: 23546830. Abstract: The present investigation entails the immobilisation and characterisation of Escherichia coli MO1-derived carbonic anhydrase (CA) and its influence on the transformation of CO₂ to CaCO₃. CA was purified from MO1 using a combination of Sephadex G-75 and DEAE cellulose column chromatography, resulting in 4.64-fold purification. The purified CA was immobilised in chitosan-alginate polyelectrolyte complex (C-A PEC) with an immobilisation potential of 94.5 %. Both the immobilised and free forms of the enzyme were most active and stable at pH 8.2 and at 37 °C. The K(m) and V(max) of the immobilised enzyme were found to be 19.12 mM and 416.66 μmol min⁻¹ mg⁻¹, respectively; whereas, the K(m) and V(max) of free enzyme were 18.26 mM and 434.78 μmol min⁻¹ mg⁻¹, respectively. The presence of metal ions such as Cu²⁺, Fe²⁺, and Mg²⁺ stimulated the enzyme activity. Immobilised CA showed higher storage stability and maintained its catalytic efficiency after repeated operational cycles. Furthermore, both forms of the enzyme were tested for targeted application of the carbonation reaction to convert CO₂ to CaCO₃. The amounts of CaCO₃ precipitated over free and immobilised CA were 267 and 253 mg/mg of enzyme, respectively. The results of this study show that immobilised CA in chitosan-alginate beads can be useful for CO₂ sequestration by the biomimetic route.[Abstract] [Full Text] [Related] [New Search]