These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Corticosterone regulates calbindin-D28k mRNA and protein levels in rat hippocampus. Author: Iacopino AM, Christakos S. Journal: J Biol Chem; 1990 Jun 25; 265(18):10177-80. PubMed ID: 2354995. Abstract: Corticosterone was administered to normal and bilaterally adrenalectomized rats (250-300 g), and hormonal regulation of brain calbindin-D28k (CaBP28k) levels was investigated by radioimmunoassay for CaBP28k protein and by slot and Northern blot analyses for CaBP28k mRNA. The specificity of the changes observed in CaBP28k mRNA levels was tested by reprobing blots with calmodulin and B-actin cDNAs. Rats were either adrenalectomized, adrenalectomized treated with corticosterone, intact, or intact treated with corticosterone. Chronic corticosterone administration (subcutaneous injection for 7 days, 10 mg/day) to normal intact rats significantly increased levels of CaBP28k immunoreactivity (43%) and mRNA (125%) in the hippocampus. Adrenalectomy (animals were killed 7 days after adrenalectomy) produced a significant decrease in hippocampal CaBP28k immunoreactivity (85%) and mRNA (80%) compared with intact controls. Immunocytochemical analysis of tissue sections inducated a marked depletion of CaBP28k immunoreactivity in the dentate gyrus of the hippocampus 2 weeks after adrenalectomy. When adrenalectomized rats were treated with corticosterone (10 mg/day for 7 days), CaBP28k protein and mRNA levels in hippocampus were restored to levels observed in intact controls. No changes in CaBP28k protein and mRNA in kidney, cerebellum, striatum, or cerebral cortex were noted in adrenalectomized rats or in intact rats treated with corticosterone when compared with controls, indicating the specificity of the effect on CaBP28k for the hippocampus. These studies present the first evidence of a regulator of CaBP28k gene expression in the brain.[Abstract] [Full Text] [Related] [New Search]