These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Muscle-specific activity of the skeletal troponin I promoter requires interaction between upstream regulatory sequences and elements contained within the first transcribed exon. Author: Nikovits W, Mar JH, Ordahl CP. Journal: Mol Cell Biol; 1990 Jul; 10(7):3468-82. PubMed ID: 2355914. Abstract: Expression of the skeletal troponin I (sTnI) gene is regulated transcriptionally in a muscle-specific fashion. We show here that the region of the sTnI gene between -160 and +61 (relative to the transcription initiation site) is able to direct expression of the bacterial chloramphenicol acetyltransferase (CAT) gene is muscle cultures at a level approximately 100 times higher than in fibroblast cultures. RNA analysis demonstrated that transcription of the CAT gene was initiated at the same site as transcription of the endogenous sTnI gene and that CAT activity levels were approximately proportional to CAT mRNA levels. Deletion analysis demonstrated that the region between nucleotides -160 and -40 contained sequences essential for full promoter activity. Surprisingly, 3' deletion analysis indicated that the first exon (-6 to +61) of the sTnI gene was also required for full activity of the sTnI promoter in skeletal muscle cells. Chimeric promoter experiments, in which segments of the sTnI and the herpes simplex virus thymidine kinase promoter were interchanged, indicated that reconstitution of a muscle-specific promoter required inclusion of both the upstream and exon I regions of the sTnI gene. Exon I, and the region immediately upstream, showed DNase protection over sequence motifs related to those found in other genes, including the tar region of human immunodeficiency virus type 1. These results demonstrate that expression of the sTnI promoter in embryonic skeletal muscle cells requires complex interaction between two separate promoter regions, one of which resides within the first 61 transcribed nucleotides of the gene.[Abstract] [Full Text] [Related] [New Search]