These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Neonatal exposure to lipopolysaccharide enhances accumulation of α-synuclein aggregation and dopamine transporter protein expression in the substantia nigra in responses to rotenone challenge in later life. Author: Tien LT, Kaizaki A, Pang Y, Cai Z, Bhatt AJ, Fan LW. Journal: Toxicology; 2013 Jun 07; 308():96-103. PubMed ID: 23567316. Abstract: Brain inflammation in early life may enhance adult susceptibility to develop neurodegenerative disorders triggered by environmental toxins. Our previous studies show that perinatal lipopolysaccharide (LPS) exposure enhances adult susceptibility to rotenone-induced injury to the dopaminergic system in the substantia nigra (SN) of the adult rat brain. To further investigate the enhanced adult susceptibility by neonatal LPS exposure to rotenone neurotoxicity, we used our neonatal rat model of LPS exposure (1mg/kg, intracerebral injection in postnatal day 5, P5, neonatal rats) to examine the protein levels of α-synuclein and dopamine transporters (DAT) in the adult rat. By P70, rats from the saline- or LPS-exposed group were challenged with rotenone, a commonly used pesticide, through subcutaneous mini-pump infusion at a dose of 1.25mg/kg/day for 14 days. The accumulation of α-synuclein aggregation and increment of DAT protein content were found in the SN of LPS-exposed rats. Neonatal LPS exposure enhanced rotenone-stimulated accumulation of α-synuclein aggregation and increment in DAT protein expression in the cytoplasmic compartment of the SN, and in the synaptosomal compartment of the striatum of adult rats. Rotenone treatment also resulted in reduction of [(3)H]dopamine uptake and mitochondrial complex I activity in the striatum of rats with neonatal LPS exposure, but not in those without this exposure. The current study suggests possible roles of α-synuclein aggregate and DAT distribution in the cytoplasm and synaptosome triggered by environmental toxins in later life in the development of neurodegenerative disorders. Our model may be useful in studying mechanisms involved in the pathogenesis of nonfamilial Parkinson's disease and for developing potential therapeutic treatments for this disease.[Abstract] [Full Text] [Related] [New Search]