These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Enhanced anaerobic digestion of organic contaminants containing diverse microbial population by combined microbial electrolysis cell (MEC) and anaerobic reactor under Fe(III) reducing conditions. Author: Zhang J, Zhang Y, Quan X, Chen S, Afzal S. Journal: Bioresour Technol; 2013 May; 136():273-80. PubMed ID: 23567691. Abstract: Microbial electrolysis cell (MEC) devices are efficient for wastewater treatment, but its application was limited due to low anode oxidation rate. The objective of this study was to improve anode performance of a MEC combined anaerobic reactor (R1) for high concentration industrial wastewater treatment via dosing Fe(OH)3. For the first 53 days without power, the addition of Fe(OH)3 in R1 enhanced the degradation of reactive brilliant red X-3B dye and sucrose. Applying a voltage of 0.8 V in R1 resulted in a higher decolorization and COD removal through driving the redox reactions at electrodes under Fe(III)-reducing conditions. Real-time PCR and enzyme activity analysis showed that the abundance and azoreductase activity of bacteria were improved in R1. Pyrosequencing revealed that dominant populations in anode biofilm and R1 were more diverse and abundant than the common anaerobic reactor (R2), and there was a significant distinction among anode film, R1 and R2 in microbial community structure.[Abstract] [Full Text] [Related] [New Search]