These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Severe acute nephrotoxicity in a kidney transplant patient despite low tacrolimus levels: a possible interaction between donor and recipient genetic polymorphisms. Author: Quaglia M, Terrazzino S, Boldorini R, Stratta P, Genazzani AA. Journal: J Clin Pharm Ther; 2013 Aug; 38(4):333-6. PubMed ID: 23574377. Abstract: WHAT IS KNOWN AND OBJECTIVE: Tacrolimus has a narrow therapeutic index and shows large interindividual variations in pharmacokinetics, which may be partly explained by genetic variability in metabolic enzymes of the cytochrome P450 (mainly CYP3A4 and CYP3A5) and transport P-glycoprotein (encoded by the ABCB1 gene). Genetic variability in the expression of biotransformation enzymes and drug transporters may also predispose individuals to tacrolimus-induced nephrotoxicity. CASE SUMMARY: We report a case of severe biopsy-proven Tacrolimus (TAC) nephrotoxicity that occurred 1 month after renal transplantation despite persistently low TAC levels. The donor genotype was CYP3A5*3/*3 (loss-of-function genotype), whereas that of the recipient was CYP3A5*1/*3. The donor and recipient genotypes did not differ with respect to either CYP3A4 rs35599367C>T (both were CC homozygotes) or ABCB1 gene polymorphisms (both TT homozygotes for the 1236C>T polymorphism and CT heterozygotes for the 3435C>T polymorphism). WHAT IS NEW AND CONCLUSION: This case study suggests that donor/recipient genetic mismatch in metabolic enzymes may have an important role in modulating tacrolimus nephrotoxicity. It provides a possible explanation for the intriguing observation that for a subset of patients, cumulative TAC doses appear to correlate better with nephrotoxicity than trough levels.[Abstract] [Full Text] [Related] [New Search]