These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Aerobic methane oxidation coupled to denitrification in a membrane biofilm reactor: treatment performance and the effect of oxygen ventilation.
    Author: Sun FY, Dong WY, Shao MF, Lv XM, Li J, Peng LY, Wang HJ.
    Journal: Bioresour Technol; 2013 Oct; 145():2-9. PubMed ID: 23582221.
    Abstract:
    Aerobic methane-oxidation coupled to denitrification (AME-D) process was successfully achieved in a membrane biofilm reactor (MBfR). PVDF membrane was employed to supply the methane and oxygen for biofilm, which was coexistence of methanotrophs and denitrifier. With a feeding NO3(-)-N of 30 mg/L, up to 97% nitrate could be removed stably. The oxygen ventilation modes impacted the denitrification performance remarkably, resulting in different nitrate removal efficiencies and biofilm microorganism distribution. The biofilm sludge showed a high resistance to the DO inhibition, mainly due to the co-existing methanotroph being capable of utilizing oxygen perferentially within biofilm, and create an anoxic micro-environment. The denitrification of both nitrate and nitrite by biofilm sludge conformed to the Monod equation, and the maximum specific nitrate utilization rate (k) ranged from 1.55 to 1.78 NO3(-)-N/g VSS-d. The research findings should be significant to understand the considerable potential of MBfR as a bioprocess for denitrification.
    [Abstract] [Full Text] [Related] [New Search]