These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Thiol-chromene click chemistry: a coumarin-based derivative and its use as regenerable thiol probe and in bioimaging applications.
    Author: Yang Y, Huo F, Yin C, Zheng A, Chao J, Li Y, Nie Z, Martínez-Máñez R, Liu D.
    Journal: Biosens Bioelectron; 2013 Sep 15; 47():300-6. PubMed ID: 23587792.
    Abstract:
    The synthesis and characterization of a coumarin-chromene (8, 9-dihydro-2H-cyclopenta[b]pyrano[2,3-f]chromene-2,10(7aH)-dione) (1) derivative and its use for thiol chemosensing in water was reported. Experimental details showed 1 acts as a probe for the detection of thiols including cysteine (Cys), homocysteine (Hcy) and glutathione (GSH), whereas amino acids which do not contain thiols induced no changes in UV-vis spectra and fluorescence emission properties of 1. A possible detection mechanism is a nucleophilic attack of thiols to the α,β-unsaturated ketone in 1 that resulted in a fluorescent coumarin derivative. Further studies showed that 1-thiol derivatives can be applied to the design of regenerative chemodosimeters for Cu(2+), Hg(2+) and Cd(2+) in water based on M(n+)-promoted desulfurization and recovery of 1. Furthermore, the optical properties of the probe and its Cys-addition product were theoretically studied. The ability of probe 1 to detect thiols in living cells (HepG2 cells) via an enhancement of the fluorescence was proved. Moreover, the applicability of 1 for the direct determination of biorelevant thiols in a complex matrix such as human plasma was also demonstrated.
    [Abstract] [Full Text] [Related] [New Search]