These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Poly(ADP-ribose) polymerase-1-induced NAD(+) depletion promotes nuclear factor-κB transcriptional activity by preventing p65 de-acetylation.
    Author: Kauppinen TM, Gan L, Swanson RA.
    Journal: Biochim Biophys Acta; 2013 Aug; 1833(8):1985-91. PubMed ID: 23597856.
    Abstract:
    NF-κB is a transcription factor that integrates pro-inflammatory and pro-survival responses in diverse cell types. The activity of NF-κB is regulated in part by acetylation of its p65 subunit at lysine 310, which is required for transcription complex formation. De-acetylation at this site is performed by sirtuin 1(SIRT1) and possibly other sirtuins in an NAD(+) dependent manner, such that SIRT1 inhibition promotes NF-κB transcriptional activity. It is unknown, however, whether changes in NAD(+) levels can influence p65 acetylation and cellular inflammatory responses. Poly(ADP-ribose)-1 (PARP-1) is an abundant nuclear enzyme that consumes NAD(+) in the process of forming (ADP-ribose)polymers on target proteins, and extensive PARP-1 activation can reduce intracellular NAD(+) concentrations. Here we tested the idea that PARP-1 activation can regulate NF-κB transcriptional activity by reducing NAD(+) concentrations and thereby inhibiting de-acetylation of p65. Primary astrocyte cultures were treated with the alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) to induce PARP-1 activation. This resulted in sustained acetylation of p65 and increased NF-κB transcriptional activity as monitored by a κB-driven eGFP reporter gene. These effects of MNNG were negated by a PARP-1 inhibitor, in PARP-1(-/-) cells, and in PARP-1(-/-) cells transfected with a catalytically inactive PARP-1 construct, thus confirming that these effects are mediated by PARP-1 catalytic activity. The effects of PARP-1 activation were replicated by a SIRT1 inhibitor, EX-527, and were reversed by exogenous NAD(+). These findings demonstrate that PARP-1-induced changes in NAD(+) levels can modulate NF-κB transcriptional activity through effects on p65 acetylation.
    [Abstract] [Full Text] [Related] [New Search]