These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Analysis of extended-spectrum-β-lactamase-producing Escherichia coli isolates collected in the GERM-Vet monitoring programme. Author: Schink AK, Kadlec K, Kaspar H, Mankertz J, Schwarz S. Journal: J Antimicrob Chemother; 2013 Aug; 68(8):1741-9. PubMed ID: 23599361. Abstract: OBJECTIVES: The aims of this study were (i) to detect extended-spectrum β-lactamase (ESBL) genes among 1378 Escherichia coli isolates from defined disease conditions of companion and farm animals and (ii) to determine the localization and organization of ESBL genes. METHODS: E. coli isolates from the German resistance monitoring programme GERM-Vet were included in the study. Plasmids were transferred by conjugation or transformation and typed by PCR-based replicon typing. ESBL genes were detected by PCR; the complete ESBL genes and their flanking regions were sequenced by primer walking. Phylogenetic grouping and multilocus sequence typing (MLST) were performed for all ESBL-producing E. coli isolates. RESULTS: Of the 27 ESBL-producing E. coli isolates detected, 22 carried blaCTX-M-1 genes on IncN (n = 16), IncF (n = 3), IncI1 (n = 2) or multireplicon (n = 1) plasmids. A blaCTX-M-3 gene was located on an IncN plasmid and a blaCTX-M-15 gene was located on an IncF plasmid. A multireplicon plasmid and an IncHI1 plasmid harboured blaCTX-M-2. A blaTEM-52c gene was identified within Tn2 on an IncI1 plasmid. The blaCTX-M genes located within the same or related genetic contexts showed differences due to the integration of insertion sequences. Various MLST types were detected, with ST10 (n = 7), ST167 (n = 4) and ST100 (n = 3) being the most common. CONCLUSIONS: This study showed that the blaCTX-M-1 gene is the predominant ESBL gene among E. coli isolates from diseased animals in Germany and a considerable structural heterogeneity was found in the regions flanking the blaCTX-M-1 gene. Insertion sequences, transposons and recombination events are likely to be involved in alterations of the ESBL gene regions.[Abstract] [Full Text] [Related] [New Search]