These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Glycolysis in human erythrocytes containing elevated concentrations of 2, 3-P2-glycerate. Author: Duhm J. Journal: Biochim Biophys Acta; 1975 Mar 14; 385(1):68-80. PubMed ID: 236004. Abstract: In studies on the mechanism of the inhibitory effect of 2, 3-diphosphoglycerate on glycolysis in human erythrocytes, the following results were obtained: 1) Glucose consumption and lactate production are reduced by 70 and 40 per cent relative to normal erythrocytes in red blood cells containing five times the normal amount of 2, 3, -P2-glycerate ("high-diphosphoglycerate" cells) at an extracellular pH of 7.4. The marked dependency of glycolysis on the extracellular pH observed in normal erythrocytes is almost completely lost in the "high-diphosphoglycerate" cells. 2) About 50 per cent of the inhibition of glycolysis in "high-diphosphoglycerate" cells can be accounted for by the 2, 3-P2-glycerate-induced decrease of the red-cell pH. This fall of the red-cell pH which occurs as a conswquence of the Donnan effect of the non-pentrating 2, 3-P2-glycerate anion leads to a reduction of the glycolytic rate due to the properties of the enzyme phosphofructokinase. 3) The remaining part of the inhibitory effect must be attributed to an inhibition by 2, 3-P2-glycerate of glycolytic enzymes. From measurements of glycolytic rates and of the concentrations of glycolytic intermediates in the absence and presence of methylene blue it is concluded that the hexokinase reaction is inhibited by an elevation of 2, 3-P2-glycerate concentration in "high-diphosphoglycerate" cells suggests that also the enzyme pyruvate kinase is inhibited by 2, 3-P2-glycerate. 4) The dependencies of net-change of 2, 3-P2-glycerate concentration on the red-cell pH are identical in normal and "high-diphosphoglycerate" cells indicating that the balance between formation and decomposition of 2, 3-P2-glycerate is the same in erythrocytes with normal and very high compositions of 2, 3-P2-glycerate.[Abstract] [Full Text] [Related] [New Search]