These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: H⁺-activated Na⁺ influx in the ventricular myocyte couples Ca²⁺-signalling to intracellular pH.
    Author: Garciarena CD, Youm JB, Swietach P, Vaughan-Jones RD.
    Journal: J Mol Cell Cardiol; 2013 Aug; 61():51-9. PubMed ID: 23602948.
    Abstract:
    Acid extrusion on Na(+)-coupled pH-regulatory proteins (pH-transporters), Na(+)/H(+) exchange (NHE1) and Na(+)-HCO3(-) co-transport (NBC), drives Na(+) influx into the ventricular myocyte. This H(+)-activated Na(+)-influx is acutely up-regulated at pHi<7.2, greatly exceeding Na(+)-efflux on the Na(+)/K(+) ATPase. It is spatially heterogeneous, due to the co-localisation of NHE1 protein (the dominant pH-transporter) with gap-junctions at intercalated discs. Overall Na(+)-influx via NBC is considerably lower, but much is co-localised with L-type Ca(2+)-channels in transverse-tubules. Through a functional coupling with Na(+)/Ca(2+) exchange (NCX), H(+)-activated Na(+)-influx increases sarcoplasmic-reticular Ca(2+)-loading and release during intracellular acidosis. This raises Ca(2+)-transient amplitude, rescuing it from direct H(+)-inhibition. Functional coupling is biochemically regulated and linked to membrane receptors, through effects on NHE1 and NBC. It requires adequate cytoplasmic Na(+)-mobility, as NHE1 and NCX are spatially separated (up to 60μm). The relevant functional NCX activity must be close to dyads, as it exerts no effect on bulk diastolic Ca(2+). H(+)-activated Na(+)-influx is up-regulated during ischaemia-reperfusion and some forms of maladaptive hypertrophy and heart failure. It is thus an attractive system for therapeutic manipulation. This article is part of a Special Issue entitled "Na(+) Regulation in Cardiac Myocytes".
    [Abstract] [Full Text] [Related] [New Search]