These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Comparative characterization of TEMPO-oxidized cellulose nanofibril films prepared from non-wood resources. Author: Puangsin B, Yang Q, Saito T, Isogai A. Journal: Int J Biol Macromol; 2013 Aug; 59():208-13. PubMed ID: 23603078. Abstract: Three non-wood celluloses, hemp bast holocellulose, and commercial bamboo and bagasse bleached kraft pulps, were oxidized by 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-mediated oxidation in water at pH 10. The water-insoluble TEMPO-oxidized celluloses thus obtained were converted to aqueous dispersions of TEMPO-oxidized cellulose nanofibrils (TOCNs) and then to self-standing TOCN films. Weight recovery ratios of the TEMPO-oxidized celluloses decreased to 70-80% and their carboxylate contents reached 1.5-1.7mmolg(-1) by the TEMPO-mediated oxidation. The viscosity-average degrees of polymerization remarkably decreased from 800-1100 to 200-480 by partial depolymerization occurring during the oxidation, depending on the non-wood celluloses used as the starting materials. The average lengths and widths of the TOCNs were estimated to be 500-650nm and 2.4-2.9nm, respectively, from their atomic force microscopy images. The self-standing TOCN films had high light-transparencies (>87% at 600nm), high tensile strengths (140-230MPa), high Young's moduli (7-11MPa), low coefficients of thermal expansion (4-6ppmK(-1)) in spite of low densities of 1.4-1.7gcm(-3). In particular, the TOCN films prepared from the hemp bast holocellulose had clearly high works of fracture (~30MJm(-3)), whereas those prepared from other two non-wood celluloses had 2-8MJm(-3).[Abstract] [Full Text] [Related] [New Search]