These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Intramuscular administration of PEGylated IGF-I improves skeletal muscle regeneration after myotoxic injury.
    Author: Martins KJ, Gehrig SM, Naim T, Saenger S, Baum D, Metzger F, Lynch GS.
    Journal: Growth Horm IGF Res; 2013 Aug; 23(4):128-33. PubMed ID: 23608055.
    Abstract:
    OBJECTIVE: Musculoskeletal injuries represent a major public health problem and drugs that can improve muscle repair and restore function are needed for patients with these conditions and other related muscular pathologies. Increasing insulin-like growth factor-I (IGF-I) levels in skeletal muscle improves regeneration after myotoxic injury and while administration of IGF-I has a potential for accelerating healing after trauma, optimizing its method of delivery and obviating potential side-effects currently associated with recombinant human (rh) IGF-I, remain a hurdle. DESIGN: We compared the treatment efficacy of rhIGF-I with a polyethylene glycol modified IGF-I (PEG-IGF-I) analog to improve functional repair of mouse tibialis anterior muscles after myotoxic injury, testing the hypothesis that PEG-IGF-I would exert greater beneficial effects on regenerating skeletal muscles than rhIGF-I due to improved pharmacokinetic properties. We also examined the relative efficacy of systemic versus local delivery of these IGF-I variants for improving functional muscle regeneration. RESULTS: Local delivery of PEG-IGF-I, but not rhIGF-I, at 4 days post-injury significantly improved early functional recovery as evident by a 27% increase in normalized force compared with saline control (P<0.05), whereas systemic application of either IGF-I variant was not effective. The improved function with intramuscular PEG-IGF-I administration was attributed to a greater and prolonged residence within the regenerating muscles, resulting in increased Akt activation and a 13% larger fiber cross-sectional area compared with rhIGF-I (P<0.05). CONCLUSIONS: These data support the hypothesis that PEG-IGF-I is more efficacious than rhIGF-I in hastening early fiber regeneration and improving muscle function after injury, highlighting its therapeutic potential for muscular pathologies.
    [Abstract] [Full Text] [Related] [New Search]