These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Synthesis, cytotoxicity, and pro-apoptosis activity of etodolac hydrazide derivatives as anticancer agents.
    Author: Çıkla P, Özsavcı D, Bingöl-Özakpınar Ö, Şener A, Çevik Ö, Özbaş-Turan S, Akbuğa J, Şahin F, Küçükgüzel ŞG.
    Journal: Arch Pharm (Weinheim); 2013 May; 346(5):367-79. PubMed ID: 23609809.
    Abstract:
    Etodolac hydrazide and a novel series of etodolac hydrazide-hydrazones 3-15 and etodolac 4-thiazolidinones 16-26 were synthesized in this study. The structures of the new compounds were determined by spectral (FT-IR, (1)H NMR, (13)C NMR, HREI-MS) methods. Some selected compounds were determined at one dose toward the full panel of 60 human cancer cell lines by the National Cancer Institute (NCI, Bethesda, USA). 2-(1,8-Diethyl-1,3,4,9-tetrahydropyrano[3,4-b]indole-1-yl)acetic acid[(4-chlorophenyl)methylene]hydrazide 9 demonstrated the most marked effect on the prostate cancer cell line PC-3, with 58.24% growth inhibition at 10(-5) M (10 µM). Using the MTT colorimetric method, compound 9 was evaluated in vitro against the prostate cell line PC-3 and the rat fibroblast cell line L-929, for cell viability and growth inhibition at different doses. Compound 9 exhibited anticancer activity with an IC(50) value of 54 µM (22.842 µg/mL) against the PC-3 cells and did not display any cytotoxicity toward the L-929 rat fibroblasts, compared to etodolac. In addition, this compound was evaluated for caspase-3 and Bcl-2 activation in the apoptosis pathway, which plays a key role in the treatment of cancer.
    [Abstract] [Full Text] [Related] [New Search]